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Abstract

This paper proposes an explanation and a cure (or avoidance) to the new defect found of Eulerian shock-capturing
methods in ‘‘A note on the conservative schemes for the Euler equations’’ by Tang and Liu [H. Tang, Tiegang Liu, A note
on the conservative schemes for the Euler equations, J. Comput. Phys. 218 (2006) 451–459]. The latter gives a numerical
investigation using several popular high resolution conservative schemes applied to Riemann problems of inviscid, com-
pressible, perfect gas flows in Eulerian and Lagrangian coordinates with an initial high density ratio as well as a high pres-
sure ratio. The results show that these methods work very inefficiently when applied to such problems and may give
inaccurate numerical results, especially in shock location (or speed), even with a very fine grid.

We have found that in problems of this type a strong rarefaction wave (SRW) is present adjacent to a contact line.
Godunov averaging over the wave then produces large errors which, when the wave is strong, also persist for a long time.
The cumulative error is thus very large which violates the strength of the contact line adjacent to it which, in turn, affects
the speed and hence the location of the shock on the other side of the contact. We confirm this numerically using a method
based on the unified coordinates with the shock-adaptive Godunov scheme plus contact strength preserving. The method,
when applied to the Examples 2.1 and 2.2 of Tang and Liu [H. Tang, Tiegang Liu, A note on the conservative schemes for
the Euler equations, J. Comput. Phys. 218 (2006) 451–459], produces high quality results even for comparatively coarse
grids.
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1. Introduction

Recently, Tang and Liu [1] have reported a new defect with shock-capturing methods applied to Riemann
problems using Eulerian or Lagrangian formulation when the initial density ratio across a contact line is high:
the computed shock location is incorrect no matter how refined the grid is, and the defect appears to be asso-
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ciated with the presence of a strong rarefaction wave (SRW). No explanation or cure was offered and the prob-
lem remains open.

It is well known that Eulerian shock-capturing methods already have a number of defects, namely, contact
smearing, start-up errors, slow-moving shocks, low pressure flows, sonic point glitch, and the notorious wall
overheating. A list of such difficulties has been compiled in [2,3]. All these are shown in [4,5] to be either cured
or avoided by using the unified coordinates approach, i.e, a generalized Lagrangian coordinates with shock-
adaptive Godunov scheme, instead of the conventional Godunov scheme. An explanation to the new defect
found in [1] will be given in this paper. Furthermore, it will be shown that this defect can also be cured within
the same framework as developed in [4,5], modified so as to preserve the strength of the contact discontinuity
adjacent to the rarefaction wave, i.e. to provide the exact values for all flow variables at both sides of the con-
tact line.

This paper is organized as follows: In Section 2 we analyze the source of errors causing shock dislocation in
the presence of a strong rarefaction wave. Section 3 describes the unified coordinates approach and the con-
tact-strength preserving technique designed to avoid the error source. Numerical examples are presented in
Section 4 and compared with those of [1]. Finally, conclusions are given in Section 5.

2. Error source for shock dislocation in the presence of SRW

From what was presented in [1], it is clear that the cause of the defect in shock location lies in the presence
of a SRW due to a strong and sudden expansion arising from high initial density ratio. Cell-averaging across
the rarefaction wave (RW) thus produces large errors which, when used in the Godunov scheme, gives errors
in the strength (and, in Eulerian computation, also location) of the contact which, in turn, cause the shock to
move at a wrong speed and hence wrong location. The phenomenon is similar in nature to that occurs in the
well-known wall overheating phenomena, which was cured by the method developed in [4,5].

Let us demonstrate this point using the solution to the Riemann problem in Lagrangian coordinates, denot-
ing k and n for the Lagrangian time and the Lagrangian coordinate, respectively, and Q for the conserved
variables. The solution to the Riemann problem
oQ

ok
þ oF

on
¼ 0 ð1Þ

Q ¼
QL for n < 0

QR for n > 0

�
ð2Þ
consists of a shock, a contact and a rarefaction wave. With the use of Lagrangian coordinates, the location of
a contact discontinuity can be captured sharply as it always coincides with a coordinate line. However, there is
no guarantee that its strength can also be computed correctly if the rarefaction wave is strong.

In the Godunov scheme, the update of flow variables from one time level to the next consists of two steps:
(Step 1) solving Riemann problems for every pair of adjacent cells and (Step 2) cell-averaging of the conserved
ii i+1i+1
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Fig. 1. Solution to a Riemann Problem in Lagrangian coordinates with j mHead
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variables. Since the Riemann problems are solved exactly, there is no error at Step 1. However, an error, and
the only error, is generated in Step 2 due to cell-averaging of the conserved variables.

Let us consider a left rarefaction wave with the slopes mHead of the head and mTail of the tail of it (see
Fig. 1). A measure of the strength of a RW is
r ¼ mHead

mTail

����
���� ð3Þ
When r < R the RW is weak or moderate (Fig. 1, left), and when r > R it is strong (Fig. 1, right). The value
of R can be taken equal to 10.0 for the examples given in [1]. With a moderate RW, the averaging error over
cell i is small, as the tail of the RW moves with a speed of the same order as the speed of its head. By contrast,
with a strong RW, the averaging error over cell i is large and, moreover, this error persists a large number of
time steps before the RW leaves the cell, as the speed of the tail of the RW is at least one order of magnitude
smaller than the speed of its head. At each time step, the averaging error in cell i gives rise to errors of flow
variables in cell (i + 1) through the cell interfacial flux. Therefore, in the case of a SRW the cumulative error is
large which, in turn, affects the shock speed and hence location.

We shall give more quantitative demonstrations using the three problems from [1].

Problem 1 (Example 2.1 of [1]). This is a Riemann problem subject to the following initial data for density q,
velocity u and pressure p.
ðq; u; pÞ ¼
ð1000; 0; 1000Þ if 0 6 x < 0:3;

ð1; 0; 1Þ if 0:3 < x 6 1:

�
ð4Þ
With high initial density and pressure ratios given, a very strong rarefaction wave is generated in the high pres-
sure region (left) once the diaphragm is removed. For this Riemann problem, the slopes of the head and tail of
the RW in Lagrangian coordinates are (the formula for the slope m will be given in the Section 3.1, see (18),
and Appendix.)
mHead ¼ �1:183; ð5Þ
mTail ¼ �0:0255813; ð6Þ
hence r = 46.245.
If we multiply mTail by the final time t = 0.15 as used in [1], then the distance travelled by the tail of the RW

over that time is d = 0.0038372. It means that for a cell size bigger than d the expansion wave did not leave the

cell i at the final time t = 0.15. The Godunov averaging over this cell at every time step will always produce an
error in the conservative variables, leading to solving the Riemann problems between the cells i and (i + 1) at
every time step with incorrect initial data. The cumulative error up to t = 0.15 will lead to incorrect flow values
on the other side of the contact which, in turn, result in a wrong speed of the shock.

Problem 2 (Example 2.2 of [1]). This is a Riemann problem subject to the even stringent initial conditions:
ðq; u; pÞ ¼
ð10000; 0; 10000Þ if 0 6 x < 0:3;

ð1; 0; 1Þ if 0:3 < x 6 1:

�
ð7Þ
Similar to Problem 1, we get
mHead ¼ �1:183; ð8Þ
mTail ¼ �0:00588; ð9Þ
hence, r = 201.20.
Again, if we multiply mTail by the final time t = 0.15 as used in [1], then the distance travelled by the RW tail

is d = 0.000706, and we encounter the same error in shock speed as in Problem 1.

Problem 3 (Example 2.3 of [1]). This is a Riemann problem subject to the initial conditions with modest den-
sity ratio:
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ðq; u; pÞ ¼
ð445; 0; 1000Þ if 0 6 x < 0:6;

ð500; 0; 1Þ if 0:6 < x 6 1:

�
ð10Þ
In this problem we have
mHead ¼ �3:1461; ð11Þ
mTail ¼ �1:501; ð12Þ
Hence r = 2.096.
If we multiply mTail by the final time t = 0.3 as used in [1], then the distance travelled by the RW tail is

d = 0.450. The RW will leave the cell i long before the final time t = 0.3, thus minimizing the cumulative error
due to averaging over the wave and leading to an approximately correct contact and correct shock speed
(location), as shown in [1].

We note that all the examples from [9] fall in the same category, i.e. the Riemann problems with modest
initial density ratio, and ordinary shock-capturing methods can give reasonable results. We also note that for
problems of this type the unified coordinates approach in [4,5] gives much improved results.

The above discussions can also explain why the solution to Problem 1 (Example 2.1 of [1]) with the exact
initial data taken at t0 > 0.001 can lead to a sufficiently accurate shock location for the particular grid size
(dx = 1/800). At time t0 = 0.002, the distance between the contact and the tail wave of the RW is
d = 0.000625 = dx/2. This means that to have at least one computational cell in the segment between the contact

line and the tail of the expansion wave, one needs t0 > 0.002. This explains why in Fig. 12 of [1] the shock is
captured correctly for t0 = 0.005, but not so for t0 = 0.001.

From the above examples we see that the use of Lagrangian coordinates alone appears to be insufficient for
the resolution of the problem of shock dislocation in the presence of SRW (see also [1], Fig. 9). The key to
resolving the difficulty associated with SRW lies in how to avoid the large averaging error from affecting the
contact (hence affecting the shock speed and location).
3. The unified coordinates approach

3.1. Classical Lagrangian coordinates versus unified coordinates

The Euler equations of gas dynamics in Eulerian coordinates (t,x) for a perfect gas with a gamma law in 1D
flow are
o

ot

q

qu

qe

0
B@

1
CAþ o

ox

qu

qu2 þ p

uðqeþ pÞ

0
B@

1
CA ¼ 0 ð13Þ
In (13), c is the ratio of specific heats of the gas, and
e ¼ u2

2
þ p
ðc� 1Þq ð14Þ
Consider the following transformation [2] to the unified coordinates (k and n)
dt ¼ dk

dx ¼ hudkþ Adn

�
ð15Þ
It can easily be shown that
on
ot
þ hu

on
ox
¼ 0: ð16Þ
This means that the coordinate n is invariant following a pseudo-particle whose velocity is hu. It unifies the
Eulerian coordinates when h = 0 and the Lagrangian when h = 1. The classical Lagrangian coordinate system
is a special case of the unified coordinate system when we take A = 1/q in adition to h = 1.
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Under transformation (15) with h = 1, the system (13) becomes
Fig. 2.
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The last equation is the compatibility condition provided by transformation (15). Using the unified coordi-
nates the formula for a slope m of a ray of a rarefaction wave is
m ¼ � a
A
; where a ¼

ffiffiffiffiffi
cp
q

r
: ð18Þ
The above equation is used for the calculation of the slopes mHead and mTail given in the previous section. In
the classical Lagrangian formulation, Eq. (17) simplifies to (see also [6]):
ou
okþ

op
on ¼ 0

oe
okþ

opu
on ¼ 0

o
ok

1
q

� �
� ou

on ¼ 0

8>>><
>>>:

ð19Þ
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A comparision between (17) and (19) shows that formulation using unified coordinates (17) has more flexibil-
ity, as A can be chosen freely. In all our computations in this paper, we take A ¼ ox

on ¼ 1 at k = 0 to have a
uniform initial grid in the physical space. An example showing the differences between the classical Lagrangian
computation and the unified computation will be given later.

3.2. Shock-adaptive Godunov scheme

With the use of Lagrangian coordinates, the location of contact discontinuity can be captured sharply. In
the case of a moderate RW, we can then also resolve the shock sharply by applying the shock-adaptive Godu-
nov scheme introduced in [4,7,8]. We shall take advantage of the fact that the Riemann solution provides us
with the exact location of the shock wave. The basic idea of the shock-adaptive Godunov scheme consists of
splitting a shock-cell, i.e., a computational cell containing a shock wave, along the trajectory of the shock. The
splitted shock-cell becomes two sub-cells: one entirely upstream of the shock and the other entirely down-
stream. In this way, the cell-averaging procedure across the shock discontinuity, and the error associated with
it, are avoided, resulting in infinite shock resolution. The fictitious cell boundary separating the two sub-cells
and moving through the regular grid at the local shock speed shall be called a partition. With this partition,
the two sub-cells and the other ordinary cells are treated on an equal footing in the Godunov scheme.
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presented in Lagrangian space.
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For more details of the shock-adaptive Godunov scheme and its numerical implementation in 1D flow, see
[4] and for those in 2D steady flow, see [7,8].

We remark that the shock-adaptive scheme is, in effect, doing a shock-fitting in an overall Godunov shock-
capturing method. This costs us no extra effort, since the information needed for fitting a shock is already
available in the exact Riemann solution.

Fitting a shock, however, has the important consequence that the Euler equations, (17), need no longer be
written in the conservation form, allowing us to use equations in other form.

In this alternative form, the energy conservation equation (the third equation in (17)) is replaced by the
entropy conservation equation
Fi
oS
ok
¼ 0; where S ¼ p

qc
ð20Þ
which is valid, as will be used, in the smooth flow region. We note in passing that the Euler equations of gas
dynamics for 1D unsteady flow admit four and only four conservation laws—conservation of mass, momen-
tum, energy, and entropy—but only three of them are independent. With the use of Eq. (20) the Euler equa-
tions in the unified coordinates become
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which are to be used in the smooth flow region.
The above form of equations enables us to cure the notorious contact overheating problem (see [5]) which

can be summarized as follows:
Sudden compression of a gas flow due to shock reflection from a solid wall or sudden expansion due to an

abrupt withdrawal of a piston from the gas is often associated with a phenomenon known generically as wall
overheating. Most conventional shock-capturing numerical methods accurately predict pressure and velocity,
while under-predicting density and thus over-predicting temperature near the wall, hence the name. Due to the
entropy conservation Eq. (20) in the smooth flow region we have exact entropy everywhere in the flow field,
provided that its initial values at each cell are computed exactly. Finally, this exact entropy, together with the
correctly predicted pressure (by most of the shock-capturing methods), correctly predicts the density and
hence the temperature, including that at the contact.
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The expansion waves from the examples of [1] are the strong expansion waves with slowly moving tails. For
these types of problems the shock-capturing numerical methods do not accurately predict either pressure or
density. Therefore, even with the exactly computed entropy, the pressure and density can be incorrect.

3.3. Contact-strength preserving

It is now clear that if and only if all flow variables along each side of the contact are computed correctly,
will the numerical computation be correct. For general problems, this condition can hardly be achieved, but
for the solution to the Riemann Problem in the unified coordinates using the shock-adaptive Godunov scheme
we can impose the constancy of the flow variables along the left side of the contact line, i.e. in the cell containing
the SRW (cell i in Fig. 1). In fact, the theoretical solution to the Riemann problem admits the constant solu-
tions along each side of the contact line.

We emphasize that the goal of this technique is to confirm numerically the explanations given in Section 2
of the new defect of shock-capturing schemes. The contact-strength preserving technique is a cure which can
be applied only to Riemann problems in the unified coordinates using the shock-adaptive Godunov scheme.

For a weak or moderate rarefaction wave, the error due to averaging over cell i (Fig. 1) is small, as
explained in Section 2, so ordinary shock-capturing methods without special treatment can preserve the
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strength of the adjacent contact with small error. This is why Problem 3 (Example 2.3 in [1]) can be computed
correctly using any established method as shown in [1].

In the presence of a strong rarefaction wave, the cumulative error due to averaging over cell i is found in
Section 2 to be large, violating the invariancy of flow variables on the left side (and hence also the right side
through the resulting incorrect interfacial flux) of the adjacent contact.

In Fig. 2 is shown the density and entropy evolution with time in cells (i + 1) (next to the contact line at the
right), (i + 2) and (i + 3) is shown. These results correspond to the computation of Problem 1 using the unified
coordinates and the shock-adaptive Godunov scheme. We can see that the density (as well as pressure and
velocity, not shown here) is incorrectly computed in all cells while the entropy is exact in the cell (i + 1),
and it deviates from its exact value in the cells (i + 2) and (i + 3). This violation of contact strength by ordin-
ary shock-capturing methods then produces a wrong speed, and hence wrong location for the shock wave. The
cure is to preserve contact strength, and this can be done easily in our unified coordinate formulation: after the
first time step, for computing the interfacial flux on the contact to be used as input to update flow in cell
(i + 1), we simply impose the data in cell i to be the data from the exact solution to the Riemann problem
in the ‘‘star’’ region between the tail of the expansion wave and the contact at every time step. In other words,
in the subsequent Riemann problems we use, as part of the Riemann data, only the flow in the uniform flow
part of the SFW-cell, instead of the whole cell, to do the averaging. This then avoids the error due to averaging
over the SRW and guarantees that the strength of the contact is exactly preserved. This use of only the part of
flow adjacent to the interface (contact) to do averaging is also justifiable, provided we take the time step small
0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

 0.8  0.81  0.82  0.83  0.84  0.85  0.86  0.87  0.88  0.89  0.9

Ve
lo

ci
ty

Distance

Velocity Distribution: RP B 

dksi=1/100
EXACT

1

dksi=1/100
EXACT

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

 0.8  0.81  0.82  0.83  0.84  0.85  0.86  0.87  0.88  0.89  0.9

Ve
lo

ci
ty

Distance

Velocity Distribution: RP B 

dksi=1/2000
EXACT

Fig. 7. Problem 2. Close-up of the velocities calculated by the present method with dn = 1/100 (top) and dn = 1/1000 (bottom).



S. Kudriakov, W.H. Hui / Journal of Computational Physics 227 (2008) 2105–2117 2115
enough so that the signal from the SRW, which is at a finite distance from the interface, has not reached the
interface.

For computing the interfacial flux to be used as input to update flow in cell (i � 1), on the other hand, we
use the average over cell i as usual.

To summarize, in our method if a shock is present, it is fitted using the information of the exact Riemann
solution obtained by solving Eq. (17). The entropy jump across the shock is determined by the Riemann solu-
tion, whereas the entropy in the smooth flow region is exactly conserved by solving Eq. (21). These treat the
wall overheating and other problems cited in [5] very well. If, however, the ratio of slopes, r, is very large
(taken to be 10.0 in our code) in the cell next to the contact line and containing a strong rarefaction wave,
we impose the flow variables from the ‘‘star’’ region, i.e. between the contact and the tail of the SRW.

4. Numerical results

In this section we shall present the computed results using the above described method. All computations
are performed using the Godunov first-order scheme and presented in Lagrangian space together with the
exact solutions for comparison.

Problem 1 (see Section 2 for its description). In Fig. 3 we show the velocity (top) and the density (bottom)
distributions at t = 0.15 for the grid size, dn = 0.01 and dn = 0.002. The resolution of the left expansion wave
is greatly improved with the refined grid, demonstrating numerical convergence. This is in the spirit of the
numerical analysis: for a smooth flow, the numerical solution should approach the exact one as the grid is
refined.

Fig. 4 with the close-up of the velocities computed using present method demonstrates that the shock is

resolved within a grid size. Fig. 4 should be directly compared to Figs. 4–10 of [1] with their results for 500 cells.
Here, we shall compute the solution to Example 1 using the classical Lagrangian coordinates, i.e. for

A ¼ ox
on ¼ 1=q and h = 1. The speed of the head of the expansion wave in these coordinates is mHead = 1183.

This means that during t = 0.15 the head of the expansion wave will travel the distance equal to 117.5. This
is an unreasonable number and we present here the solution at t = 0.0015. Even at this time we can see from
Fig. 5 that while the head of the expansion wave made the distance 1.775, the shock wave had hardly moved,
making a distance 0.006.

Problem 2 (see Section 2 for its description). Looking at Figs. 6 and 7 we see that the same conclusions hold as
for the previous example: the resolution of the strong rarefaction wave improves with grid refinement, and the
shock wave is resolved within one cell size even for rather coarse grid (dn = 0.01). Fig. 7 should be compared
directly to Fig. 11 of [1] with 2000 cells.
5. Concluding remarks

In using shock-capturing methods for one-dimensional flow computation, the unified coordinates formula-
tion, i.e., a generalized Lagrangian coordinate system with shock-adaptive Godunov scheme plus contact-
strength preserving, is definitely superior to Eulerian formulation. In particular, shock and contact disconti-
nuities are easily fitted within the over-all capturing technique with no additional cost. The new defect
described in [1] can also be cured in the framework of the proposed method when applied to a Riemann prob-
lem with strong rarefaction waves.

Historically, the two seminal papers in CFD for 1D flow by Von Neumann [10] and Godunov [11] both
used Lagrangian formulation. Unfortunately, this has not been easily extended to two- and three-dimensional
flow, partly because it was not easy [12] to write the Lagrangian gas dynamics equations in the conservation
form, and partly because the Lagrangian computation may break down due to grid tangling. Conservation
form Lagrangian gas dynamics equations have now been derived [13,14], and, consequently, new Lagrangian
schemes have been proposed [15], which may allow a generalization of 1D Lagrangian methods to 2- and 3D
flow computation. A comprehensive review of the unified coordinates approach to CFD has just been given
[16] which can also avoid grid tangling.
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Appendix. Computation of mHead and mTail in Eqs. (5) and (6)

The smooth solution from the m� ¼ � a
A characteristic fields can be derived from the following system of

ODE:
dq
dp
¼ 1

a2
ð22Þ

du
dp
¼ � 1

aq
ð23Þ

dA
dp
¼ � A

qa2
ð24Þ
The solution for q, u, A relates the flow state Q = (p,q,u,A)T in the rarefaction fan to the initial state
Q0 = (p0,q0,u0,A0)T upstream of the fan through the following expressions:
q ¼ q0

p
p0

� �1=c

ð25Þ

u� 2a
c� 1

¼ u0 �
2a0

c� 1
ð26Þ

A ¼ A0

p0

p

� �1=c

ð27Þ
The upstream data for the left expansion wave in Problem 1 are
p0 ¼ 1000:0; ð28Þ
q0 ¼ 1000:0; ð29Þ
A0 ¼ 1:0; ð30Þ
while the pressure, p, density, q, and the geometrical parameter A values in the ‘‘star’’ region (between the tail
of the left expansion wave and the contact line) are p* = 11.413, q* = 40.97, and A* = 24.41, respectively.
Using the above data we can deduce the values of mHead and mTail as
mHead ¼ �
a0

A0

¼ � aL

AL
¼ �1:1832; ð31Þ

mTail ¼ �
a�

A�
¼ �0:0255813: ð32Þ
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